
Random magnetic fields and instantons in replica space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 3143

(http://iopscience.iop.org/0305-4470/25/11/022)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 16:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. k Math. Gen. 25 (1992) 3143-3151. Printed in the UK 

Random magnetic fields and instantons in replica space 

G Parisi and V Dotsenkot 
Dipartamento di Fisica, Universit.3 di &ma Tor Vergata', 00173 Roma, IUly 

AbstracL We study a ferromagnet in a random magnetic field using the replica method. 
We find that the mean field equations have localized solutions (i.e. instantons), which 
are not invariant under mtations in replica space. The relevance and the properties of 
these solutions are studied. 

1. Introduction 

The theoretical evaluation of the critical exponents of a ferromagnet with a random 
magnetic field is a difficult problem and new results have been obtained very slowly. 
There are a few safe statements. Naively we would expect the lower critical dimension 
to be 2 (Imry and Ma 1975). Indeed, if we try to reverse a large region there are 
two competing effects: the gain in energy due to the alignment with the random 
magnetic field, which scales as the volume to the power 4; and the loss of energy 
due to the creation of an interface, which scales as the surface. For dimensions 2 or 
lower the two effects are comparable and no spontaneous magnetization should be 
present. On the the other hand, as soon as the dimension D is greater than 2, this 
effect should not spoil long-range order and a ferromagnetic transition (with peculiar 
critical exponents) should be present. This naive @ut physically correct) argument 
was confirmed by a rigorous proof by Imbrie (1984). 

On the other hand, a perturbative study of the transition has been done using the 
standard perturbative techniques of analysing fluctuations around the usual solution of 
the mean field equations. In this case it was shown that, as far as the leading infrared 
divergences were concerned, the strange phenomenon of a dimensional reduction was 
present and the critical exponents of the system in dimensions D were the same as 
those of the ferromagnetic system without random magnetic in dimension d = D -2  
(Young 1977). 

This result would imply that the lower critical dimension is 3, at wriance with the 
rigorous results. This paradox was solved in the following way. For a given magnetic 
field h(z ) ,  the procedure of summing the leading infrared divergences is formally 
equivalent to determination free energies and expectation values. If the Hamiltonian 
in presence of the magnetic field has only one minimum, this procedure is described 
by the stochastic equation 6 H / 6 4 ( z )  = h ( z )  which has only one solution. Arriving 
at this p i n t  the dimensional reduction can be rigorously shown to be exact, by using 
of supersymmetrc arguments (Parisi and Sourlas 1979, Parisi 1982, Parisi 1987). More 
precise results could be obtained if we were to substitute the Hamiltonian with the 
free energy. 

t On leave from Landau Institute far lhlheoretical Physics, Russian Academy of Sciences, Moscow. 
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However, as soon as the temperature is smaller than the transition temperature 
of the system without a magnetic field (the pure system in short), there are values 
of the magnetic field for which the free energy has more than one minimum and 
the stationaly equations have more than one solution. In this situation there is no 
reason to believe that the supersymmetric approach should give the correct results 
and therefore the dimensional reduction is not applicable. The transition temperature 
of the system in a magnetic field is smaller than that in absence of a magnetic field, 
so that in the whole region near to the transition dimensional reduction does not 
hold. This is not surprising, because dimensional reduction completely misses the 
appearance of the Griffith's transition (Griffith 1969) which is present in the random 
system at the same temperature as the pure system. The existence of more than one 
solution is a non-perturbative phenomenon (with respect to the coupling constant g) 
and therefore we could expect that the deviations from the results of the dimensional 
reduction would be not he seen in the expansion of the exponents in powers of E 
where D = 6 - E. in other words it S natural to conjecture that the difference 
between the true critical exponents and those of the dimensional reduction should he 
exponentially small when D goes to 6 (and perhaps proportionally to exp[-A/€]).  
The precise procedure by which to compute such a difference is still a mystery. 

It was shown that the existence of more than one solution to the stationary equa- 
tions in the presence of the external field is related, in the replica approach, to thc 

not invariant under translations and rotations in replica space (translation invariance 
and replica symmetry is recovered by considering the set of all possible solutions of 
this kind). It is possible that instantons in replica space may play a crucial role in 
understanding the deviations from the dimensional reduction for the critical expo- 
nents. The aim of this paper is to start to study in detail the properties of these 
instantons, which are quite peculiar. We do not attempt to investigate the behaviour 
of their contribution near the critical point, hut we &it ourselvis to investigating 
their properties in the low-temperature regime where perturbation theory may he 
used more safely. We hope that these results may be a first step towards a better 
understanding of the role of replica symmetry in the properties of random magnetic 
field ferromagnets. 

The paper is organized as follows: in section 2 we introduce the model, the 
replica tormaiism and write down the equation tor the instanton. in section 3 we 
study the solution of the equations in the previous section and we evaluate the 
instanton contribution to the free energy. In section 4 we evaluate the instanton 
contribution to the correlation functions. 

P I ~ D ~ P ~ ~ P  nf ~ P I X ,  ~nl . . t :nne +n r h o  moon f i a l A  nn..n+:nnr :n ra- l i~n ~. -nro ..rh:rh n - ~  
C n o L l l l l l  "I .I.," W I Y L I " . . O  ." L1.V 111C'xLI 1. .,.U ~ ' I U ~ L ' " " "  "L l C p M  o p c c  Wll .C , ,  'IlC 

2. Tne modei 

We consider the model which is described by the Hamiltonian 

where 4 is a continuous scalar field, 
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and the random fields h(r )  are described by the Gaussian distribution 

P ( h )  = exp(-h2/2hi)  h, < 1. (3) 

The free energy is calculating in terms of the replica approach: 

where (( ...)) denotes the averaging over the random fields. For the replica partition 
function we obtain 

We will be interested in the solutions with broken replica symmetry. Assuming 
that such solutions are on a finite distance from the replica symmetric one, the 
nQtt:t:nn fllnr+;nn ontln+inn K\ mnTr ho ronroran+arl or fnlln.,ir Y".'LL'".. y"..L."L. ,<,, ....., "- .-r."o"..L"" - &"..".." 

((2")) = ((zn))Rs + ( ( W ) R S E i .  (6) 

The first term in equation (6) contains the summation over all the degrees of 
freedom near the replica symmetric states. Here we will study the second term, 
where the replica symmetry is broken. 

Consider the situation when in the replica vector 

v = (41,42,. . . ,4")  (7) 

(n - 1) components are equal and only one component is different from them. In this 
case we are left with the two independent fields & ( r )  and d 2 ( r )  and, in the limit 
E 3 0, we hive C, p = +1 f ( E  - I ) &  - - &. FIX ?he panhi~n fcnction we 
then obtain 

The factor n appears due to the number of permutations. The saddle-point 
equations for the fields d1 and 4' are 

(8j 
-A41 + V'(4i) = ~ ( $ 1  - 42) 
-A42 + V'(42) = y(41 - 42) 

where y = phi .  
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We are interested in the non-trivial smooth solutions with # +2 and such that, 
at r -+ 00, they would coincide with the replica symmetric one: 4,(05) = &,(03). 

Thii way we will get a finite value for the integral in the exponent of equation (S), 
and correspondingly a finite contribution for the partition function. 

Here we consider the zero temperature limit, when y - 05. Redefining the fields: 

in the lowest order in 7-l we obtain the equations 

-Ad(.)  t V'($(r))  = 
$+(TI + V"($(r))+ = 0. (11) 

These equations have simple non-trivial solution of the form 

2 
?L(r) = - -d ' ( r )  r (12) 

- +"(?-) - -c#J'(r) r + VI(+(?-)) = 0. (13) 

... Lam A/^\ :- +ha r,.l..t:-." ,.F *Lo 
W I 1 r . C  y ( r ,  w u,r * U I " L I U I I  U, u.r b q u a L 1 u L L  

d - 3  

This is the equation for the system without random fields with the shifted dimention- 
ality d -+ d - 2. However, it does not mean (as will be shown later) that all the 
results are coming just from shifting dimentionality. In fact, in the solutions of the 
equations (9) there is a special kind of degeneracy. ?aking 

where A, and A, are free parameters, we obtain the equations 

(15) 
-a4 t V ' ( 4 )  = ( A ,  - a b  
-a* t V"(d)+ = 0. 

Taking A, - A, = 1 we again obtain the equations (11). Therefore, the solution 
of equations (9) in the lowest order in 7-' are 

where the functions d ( r )  and +(T) are given by equations (12) and (13), and A is a 
free parameter. 
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It will be shown in the next section that the solution of equation (13) for the 
function #(r)  also contains an additional parameter which is +(r  = 0)  E &. This 
is the instanton-like solution, and it has a iinite spatial size L ( 4 0 ) .  Therefore, to 
calculate the partition function, equation (8), one should take the instanton solution 
for the fields and d,, equation (16), and integrate over the remaining degrees of 
freedom, which are A, 4, and the position of the centre of the soliton. 

After some algebra we obtain 

where if is a voiume of the system and 

E, = dd7-V”’(4(~))$0()3 = - 4 8 j  $ + ( r ) ( 4 ‘ ( ~ ) ) ~  J 
J 

(19) 

(20) 
d d r  E3 = dd7-V””(4(r))$0()4 = 9 6 1  ,(4’(~))~. 

The integration over the parameter X goes near the minimum of the function in 
the exponent of equation (17). If E,, E, and E3 are converging and if E, > 0, 
which will be shown to be the case for d < 3, the minimum is at X = 0, and the 
integration over X gives 

Correspondingly, for the density of the free energy we obtain the following finite 
contribution: 

It can be shown (see appendix) that the contribution of the higher orders of the 
replica symmetry breaking in the replica vector p ( r ) ,  equation (t), does not exist. 
Therefore, result (22) is the only contribution to the zero-temperature free energy 
from the states with broken replica symmetry. 

3. The solutions 

(i) For d > 3 the smooth solutions of the equation 

d - 3  
r 

,$“+---+’=+(4,-1) 
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with +(CO) = 1 and d(0) # 1 do not exist. 
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(ii) For d = 3 the solution is 

$(r )  = t a n h ( ( r -  L ) / & )  (24) 

- tanh(L/fi) = + ( a ) ?  do .  (25) 

where 

However, it can be easily shown that the factors E2 and E3, equations (19) and 

(iii) Consider the case 2 < d < 3: 

The asymptotics of the solution of equation (13) are 

(20), are divergent at T -t 0. 

d = 3 - t  O < E < l .  (26) 

Note that the case E = l ( d  = 2) needs special consideration since the asymptotics, 

The conditions for a smooth connection of these two asymptotics at 7 - e give: 
equation (27), are not valid in this case, and therefore it is not considered here. 

- a + d o " t a n h  
I + €  

a = 

t 

1 t -  L (1 - t a n h '  (-)) 
These two equations define the parameters a and L as functions of do. 
It will become clear from what follows that the main contribution to the free 

energy, equation (22), comes from the vicinity of the point 4,, = -1. If (1 -4 ; )  << 1, 
we osiain 

where a, = (1 + e ) [ f i ( l  + e )  + 2eI-l is a numerical factor. 
Now one can easily estimate E,, E, and E,, equations (18)-(20), 

Eo(do) = a1e1-'(1 - &)'+ (1' ( log - (30) 

(31) 
1 

- ' n e  factor E3 converges oniy for t > g: 

Here a , ,  a2,. . . , a s  are irrelevant numerical factors. 

(22), we finally obtain the result 
Using equations (30)-(32) and integrating over do for the free energy, equation 

where it is assumed that e > 5. 
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4. Correlation function 

In terms of the replica approach the correlation function G ( r )  = (+(0)4(r))  can be 
represented as follows 

G(r)  = lim o Q 4 ' ( 0 ) 4 ' ( r ) e x p { - p H [ ~ ] }  (34) 
lL-0 J 

01 

G(r )  = G(7,)RS + J o41D42(41(0)41(7-)  - 42(O)42(r))exp(-PH(41,421) 

(35) 
where the first term is the replica symmetric contribution and H [ 4 , ,  42] is the Hamil- 
tonian in equation (8). 

Following the calculations from section 2, for the second term in the equation 
(39, which is the contribution coming from the replica symmetry breaking, we obtain 

(36) 
The second integration in equation (36) is the integration over the location of the 

soliton. 
Using the solutions for the functions +(r )  and $(r ) ,  equations (27) and (12), 

and the estimations for E, and E,, equations (30) and (31), for 1 << T << log 1 / h . ,  
we obtain (d  = 3 - E ,  1/3 < t < 1): 

e x p ( - r )  - - G(r)RsB = -c,h,r 2 2 - + e  e x p  

where c1 and c2 are numerical factors. 

of r: 
For r >> log 1 l h ,  the RSB part of the correlation function becomes independent 

G(r - m)RSB = - c l h i  

5. Conclusions 

In the present paper we have demonstrated that in the random field systems there 
exist localized instanton-like states giving finite contributions to the free energy and 
to the correlation functions. These states are not invariant under rotations in the 
replica space, they have finite energy and finite size, and they are clearly beyond any 
kind of a perturbation theory. 

However, several questions remain to he answered. It is not quite clear what 
happens with the obtained replica instantons at finite temperatures and in particular 
near the transition point. The two-dimensional system appeared to be beyond the 
present study and it requires special consideration. A more general problem is to 
understand what is the interrelation (if any) between the Griffith's singularities and 
the obtained instanton states. 
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Appendix 

Higher orders of RsB in the present approach mean that in the replica vector p ( a  = 
1 , 2 ,  ..., n )  m > 1 components are different and the rest ( n  - m) components are 
equal: 

G Parisi and V Dotsenko 

i f a =  1 , 2 , . , . , m  

For the replica partition function we obtain 

(39) 

Here C; is the number of permutations. In the limit n -+ 0, 

C; -t n-. 
m 

where +( r )  and + ( r )  are the solutions (12) and (13) of equations (11). and the 
parameters A, and X are bounded by the condition 

m 

C(X. - A )  = 1. 
0 = l  

The corresponding contribution to the partition function is 

(44) 
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Introducing 

m m 

t , = m A , - C X b  u = C x b  
b = l  b = l  

where 2: t ,  3 0, instead of the integration Over A’s in equation (45) we obtain 

m 

a=1 

1 

37m a=1 

(47) - 

Leaving only the leading orders in y-’ and integrating over I :  we obtain 

i j d u e x p  { -%U’ - E2 u2 
fi 6y3h: 2yzm2h: 

m -  1 
_ _ _  2 log [Au+ 

This integral is pathological for any m # 1. 

(45) 
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